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Abstract.

Background: Quantitatively predicting the progression of Alzheimer’s disease (AD) in an individual on a continuous scale,
such as the Alzheimer’s Disease Assessment Scale-cognitive (ADAS-cog) scores, is informative for a personalized approach
as opposed to qualitatively classifying the individual into a broad disease category.

Objective: To evaluate the hypothesis that the multi-modal data and predictive learning models can be employed for future
predicting ADAS-cog scores.

Methods: Unimodal and multi-modal regression models were trained on baseline data comprised of demographics, neu-
roimaging, and cerebrospinal fluid based markers, and genetic factors to predict future ADAS-cog scores for 12, 24, and
36 months. We subjected the prediction models to repeated cross-validation and assessed the resulting mean absolute error
(MAE) and cross-validated correlation (p) of the model.

Results: Prediction models trained on multi-modal data outperformed the models trained on single modal data in pre-
dicting future ADAS-cog scores (MAE2, 24 & 36 months =41, 4.5, and 5.0, 012, 24 & 36 months = 0.88, 0.82, and 0.75). Including
baseline ADAS-cog scores to prediction models improved predictive performance (MAE3, 24 & 36 months =3.5, 3.7, and 4.6,
P12, 24 & 36 months =0.89, 087, and 080)

Conclusion: Future ADAS-cog scores were predicted which could aid clinicians in identifying those at greater risk of decline
and apply interventions at an earlier disease stage and inform likely future disease progression in individuals enrolled in AD
clinical trials.
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INTRODUCTION

Alzheimer’s disease (AD) is an irreversible and
multi-factorial neurodegenerative disease with a pro-
gressive decline in cognitive abilities [1]. AD affects
several tens of millions of people globally and is
widely studied [2]. Yet, the pathogenesis of AD re-
mains unclear [3]. Cognitive tests, brain volumetry
from magnetic resonance imaging (MRI), amyloid
load, and glucose consumption levels from positron
emission tomography (PET), and protein analysis
of cerebrospinal fluid (CSF) provide valuable and
complementary disease markers to chart the disease
progression [4, 5]. Qualitative and manual analysis
of these markers to diagnose patients could be poten-
tially aided by automated algorithms [6].

The classification based on clinical diagnosis pla-
ces an individual into normal, mild cognitive impair-
ment (MCI), or AD groups [7, 8]. Memory loss (either
self-reported or by an associate) is observed dur-
ing the initial stages of AD [9]. Declining cognitive
skills is also common and can potentially lead to
dementia [10]. Hence, the disease progression must
be carefully monitored at the earliest stages [11]. AD
risk factors include sociodemographic factors (e.g.,
increasing age and fewer years of education), genetic
(APOE alleles count), and patient medical and family
history [12]. A clinical diagnosis of AD is currently
a challenge due to a lack of clear diagnostic mark-
ers of AD and overlapping clinical features with
other dementia types [13, 14]. At postmortem, AD
is characterized by the presence of amyloid-f3 pep-
tide plaques and accumulations of tau proteins in the
brain histology samples [15].

The progressive nature of AD makes diagnosing
an individual into any of the discrete groups a cha-
llenging proposition [16, 17]. Conventional diagnos-
tics analyze changes in MRI, CSF, and cognitive bio-
markers [18, 19], but this could be inefficient as the
changes can be slow and difficult to detect [20, 21].
The change in these biomarkers is nonlinear with
the clinical progression of AD, further complicating
longitudinal tracking. Therefore, quantifying and tra-
cking the condition of the patient by continuous mea-
sures such as ADAS-cog scores has been advocated
[22-27]. ADAS-cogis widely used clinically (to mea-
sure language, memory, praxis, and other cognitive
abilities) and provides an accurate description of the
cognitive state on a continuous scale, making it an
ideal choice for predicting the disease progression
[28,29]. The availability of standardized multi-modal
data and corresponding longitudinal ADAS-cog

scores from research organizations, such as the Al-
zheimer’s Disease Neuroimaging Initiative (ADNI)
project, has enabled the development of novel tech-
niques for tracking AD progression by employing
machine learning [30]. However, predicting ADAS-
cog scores has been reported as very difficult
[31]. In the recent Alzheimer’s Disease Prediction
of Longitudinal Evolution (TADPOLE) Challenge
(https://tadpole.grand-challenge.org/), forecasts of
clinical diagnosis and ventricle volume were very
good, whereas, for ADAS-cog, no team participat-
ing in the challenge was able to generate forecasts
that were significantly better than simple baselines.

Previous studies on predictive modeling of ADAS-
Cog 13 scores include Yang et al. who developed
a model that replicated the observed progression of
ADAS-Cog 13 scores and used this as a more pre-
cise estimate of the pathologic stage [22]. Bhagwat
et al. utilized ADAS-cog scores to classify subjects
into sub-classes [26] and Moore et al. predicted future
ADAS-Cog scores based on longitudinal data (at least
4 periods of data were required) [24]. Lei et al. utilized
MRI data to predict ADAS-cog scores [32], while
Utsumi et al. predicted ADAS-cog scores with multi-
modal data for up to 24 months from baseline on a
limited number of subjects (n=100) [25]. Instead,
we will utilize multi-modal data (various imaging
modalities, CSF biomarkers, cognitive tests) at the
baseline to predict ADAS-Cog scores on a contin-
uous scale for up to 36 months from baseline and
study the relevance of each modality for prediction
in a standardized setting.

We will test several multivariate regression tech-
niques, such as partial least squares regression (PL
SR) [33, 34], support vector regression (SVR) [35,
36], and random forest regression (RF) [24, 37],
that enable modeling complex relationships between
baseline multi-modal ADNI data (predictors) and
future ADAS-cog 13 scores. The multivariate nature
of the modeling is desirable for the ADAS-cog score
trajectory analysis due to the complementary nature
of the AD measures. The resulting trajectory predic-
tions could alert clinicians to prescribe appropriately
(once disease modifying interventions are available).
Moreover, knowing the likely future trajectory of the
disease will provide a benchmark with which to test
clinical evolution in patients enrolled in clinical trials.

We hypothesized that the multivariate regression
techniques are well suited for multi-factorial dis-
eases and that the progression of AD, as indicated
by ADAS-cog scores in subsequent timelines, can be
accurately predicted. Furthermore, the inclusion of
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baseline ADAS-cog scores could improve the pre-
dictions of the model in subsequent follow-ups.

METHODS

ADNI dataset

Data in this study were obtained from the Al-
zheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.usc.edu/). In addition to the
various summary tables directly provided by ADNI,
we used summary tables prepared for the TAD-
POLE grand challenge based on ADNI data at https://
tadpole.grand-challenge) [31, 38]. The data are from
the TADPOLE tables if not otherwise stated. (Spe-
cific variable names are provided as Supplementary
Table 1). The ADNI project started in 2003 as a
public-private partnership, led by PI Michael W.
Weiner, MD. The main objective of ADNI is to
evaluate the application of serial MRI, PET, other bio-
logical markers, and clinical and neuropsychological
assessment in a multi-modal approach to determine
the longitudinal progression of MCI and early AD.

We utilized pre-processed ADNI data because of
the standardized processing pipeline that ensured the
quality of the data. This multi-modal data is read-
ily available for other researchers enabling a direct
comparison of the study results. For making the pre-
dictions, we utilized only the data from the baseline
visit from the following modalities: MRI, FDG-
PET, AV45-PET, neuropsychological and behavioral
assessments (NePB), CSF biomarkers as well as dem-
entia risk factors. From each modality, we selected a
few variables that have been found important in the
previous literature. The predictor variables and the
reasons for their selection are explained in Table 1.

Subjects

The characteristics of subjects recruited in the
ADNI dataset are described in detail here http://
adni.loni.usc.edu/. The trends of the ADAS-cog 13
scores utilized in this study are provided in Supple-
mentary Figure 1 and the details of subject charac-
teristics are provided in Table 2. There are fewer
subjects in follow-up visits than in the baseline visit
due to subject attrition and missing data. Our pur-
pose was to create a simple and standardized testing
environment to truly assess the importance of predic-
tor variables from different modalities. Therefore, we
only retained subjects with complete data (see Table 2
for a summary of the data utilized) and no data impu-
tation was necessary. Note that some subjects change

diagnostic status over the follow-up period. The roster
identification (RID) numbers of the included sub-
jects are provided as comma-separated values in the
Supplementary Material.

Multivariate regression analysis

We employed multivariate regression to pre-
dict ADAS-cog scores based on predictor variables
detailed above. We considered four different predic-
tion tasks: predicting ADAS-cog score at baseline
and at 12, 24, or 36 months after the baseline. In all
of these tasks, the predictor variables are from the
baseline visit. The group of features (predictors) used
for regression are denoted by the column vectors Xj,
(i=0, 1,..., L), where L is the number of features
(Fig. 1). The ADAS-cog scores (dependent variable
or response variable) are denoted by the column vec-
tor Y.

We employed widely used machine learning tech-
niques including PLSR [39], SVR [40], and RF
and created prediction models [41]. Additionally, a
genetic algorithm (GA) was utilized to rank the vari-
ables in the order of importance in the multi-modal
case [42]. A summary of these methods is provided
in Table 3.

Regression modeling

The prediction of the ADAS scores (at baseline, 12
months, 24 months, and 36 months) was performed
by employing PLSR, SVR, and RF. Both single modal
(each modality of Table 1 alone) and multi-modal
predictors (all modalities combined, Table 1) were
considered. All the predictors were from the baseline
visit. Under single modalities Age, years of educa-
tion (Edu), number of APOE &4 alleles (APOE) were
exactly 1 variable each, CSF had 3 variables, AVF45-
PET had 4 variables, NePB and FDG had 5 variables
each, MRI had 9 variables and hence the multi-modal
model had a total of 29 variables (Supplementary
Table 1). All variables were assumed to be continuous
and we standardized the variables to be zero-mean
and unit standard deviation.

Performance metrics and evaluation

We evaluated the prediction models using 5-fold
repeated cross-validation with 10 repeats, see Figs. 1
and 2. The models were evaluated in terms of cr-
oss-validated correlation coefficient (p) and the mean
absolute error (MAE) between the actual ADAS-cog
13 scores and its model-predicted values. In addition
to the average MAE and correlation coefficient, we
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Table 1
Modalities summary

Modality Short description of the features used in the regression models. Feature count
MRI We used 9 features: intracranial volume (ICV), and volumes of the hippocampus, entorhinal cortex, and lateral ventricles 9
as well as the latter four divided by the ICV. These features were selected based on previous studies [48]. We included
volumes divided by the ICV as it is unclear whether raw or ICV-corrected volumes are better predictors of dementia [48, 49]
AV-45 PET We used standardized uptake values (SUVs) in four regions: frontal cortex, cingulate, lateral parietal cortex, and lateral 4
temporal cortex. The AV-45 PET measures amyloid-beta load in the brain. We used regional SUV ratios processed according to the
UC Berkeley protocol [50-52]. Each AV-45 PET scan was co-registered to the corresponding MRI and the mean AV-45 uptake within
the regions of interest and reference regions was calculated. Regions of interest were composites of frontal regions, anterior/posterior
cingulate regions, lateral parietal regions, and lateral temporal regions [53]
FDG-PET We used average SUVs in five brain regions: bilateral angular gyri, bilateral posterior cingulate gyri, and bilateral inferior temporal gyri.
The FDG PET data measures glucose consumption and is shown to be strongly related to dementia and cognitive impairment
when compared to normal control subjects [52, 54, 55]. 5
CSF proteins The baseline CSF A4, t-tau, and p-tau were used as CSF features [56]. 3
Neuropsychology We selected to include 5 NePB scores as NePB features: the summary score from Mini-Mental State Examination (MMSE) [57], 5
and behavioral three summary scores of Rey’s auditory verbal learning test (RAVLT; learning, immediate, and percent forgetting) [58],
(NePB) assessments and a summary score from the functional activities Questionnaire (FAQ) [59].
We considered age, the number of APOE &4 alleles, and the years of education. With aging, normal cognitive decline is an accepted 3

Risk factors: age,
education, and APOE

ADAS-cog scores

phenomenon, but lower education and lower cerebral metabolic activity could accelerate the normal decline [60]. The APOE &4 allele,
present in approximately 10—15% of people, increases the risk for late-onset AD and lowers the age of onset. One copy of 4 (g3/e4)
can increase risk by 2-3 times while homozygotes (e4/e4) can be at 12 times increased risk [61]. We coded APOE &4 status of absence,
single copy, or homozygous as 0, 1, and 2, respectively.

The ADAS-cog 13 task scale was one such improvement on the original ADAS-cog 11, with additional memory and attention/executive
function tasks [62]. The final 13 tasks test verbal memory (3 tasks), clinician-rated perception (4 tasks), and general cognition (6 tasks).
It was found to perform better than the ADAS-cog 11 at discriminating between MCI and mild AD patients, as well as have better
sensitivity to treatment effects in MCI [63]. As the ADAS-cog 13 fully encompasses the ADAS-cog 11 tasks, it is also backward
compatible. As such, we used the ADAS-cog 13 scale for our study as a continuous quantitative measure of a subject’s disease status.
The scores at baseline, 12-month, 24-month, and 36-month timelines were obtained from the ADNI dataset (Table S.2).

The value (0 to 85) of these scores is lowest for the normal control group and increases with disease progression and the

scores are highest for AD subjects.
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|
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Dependent Predictors (X)
variable (Y)

Fig. 1. Regression modeling structure. Single modality uses one predictor at a time while multi-modal uses all the predictors as indicated
above. The sample size for baseline (N=757), 12 months (N =629), 24 months (N=563), and 36 months (N=314) were different due
to missing values (cohort attrition). The predictors consist of age at baseline, years of formal education (Edu.), APOE &4 status (absence,
single copy or homozygous coded as 0, 1, and 2 respectively), MRI-derived parameters, neuropsychiatric and behavioral assessment (NePB),
AV45-PET measurements, CSF biomarkers (amyloid-@, tau, p-tau) and FDG-PET measures. The number of features is indicated above each
modality abbreviations. All the variables were considered as continuous and standardized to be zero-mean and unit standard deviation.

Table 2
Summary of the subject demographics and ADAS-cog 13 scores

Baseline 12 months later 24 months later 36 months later
NC MCI AD NC MCI AD NC MCI AD NC MCI AD
No. of Subjects 241 405 111 169 337 117 195 271 89 40 209 61
M/F 112/129  226/179 68/43  89/80 181/156  76/41 103/92 147/124 53/36  22/18 101/108  39/22
Age 56-89 55-91 55-90 55-89 56-92 55-90 56-89 55-91 5590 55-84 55-87 55-56
ADAS-cog 0-24 3-38 14-51 1-21 1-73 9-62 0-25 2-45 8-67 0-18 0-36 8-74
13 scores

computed bootstrapped 95% confidence intervals
(CIs) for them utilizing a specific procedure for boot-
strapping repeated cross-validation results developed
by Lewis et al. [43]. These ClIs approximate the gen-
eralization performance of the prediction measured
by cross-validated correlations and MAEs. Likewise,
we performed hypothesis testing between the pre-
diction models using a permutation test adapted to
repeated cross-validation. This test was also devel-
oped by Lewis et al. [43]. The technical description
of the hypothesis test and the code are provided at

A genetic algorithm for variable importance

The selection of the best subset of variables (ter-
med variable selection or feature selection) is a chal-
lenging task in machine learning. One of the various
approaches for variable selection is by GA [42],
which additionally provides us a ranking of the imp-
ortance of individual variables for ADAS prediction.
In brief, GA aims to select a subset of variables that
best predict the response variable, ADAS-cog score
in our case. Due to randomness inherent to GA, a

different set of variables is selected during each run

https://github.com/jussitohka/repeated_CV _permuta of the GA. By running GA r (here r=100) times, we

tion_test. assume that the frequency of retention of a variable
among r GA runs corresponds to the importance
Implementation of that variable in predicting the ADAS score. A

The analyses were performed on MATLAB 2019b
(The Mathworks Inc, Natick, MA) using native
machine learning functions. The PLSR was executed
with plsregress function and the optimal number of
PLS components was manually selected based on
the least root mean square error for training data
[33]. SVR was executed with firrsvm and RF with
fitrensemble and in both methods the models were
tuned by setting OptimizeHyperparameters argument
as auto [37, 44].

GA is a general optimization technique inspired by
natural selection. GA-based variable selection en-
codes each possible solution to the problem as a bin-
ary vector with the same number of components as
there are variables, with the value 1 in the ith
component meaning that the ith variable is in the
model. GA initializes with a random population of
potential solutions (called chromosomes) and then
evolves this population through mutation, selection,
and cross-over operators guided by the fitness
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Table 3
Regression methods summary and hyperparameters information

Regression Short description Hyperparameters Optimization Matlab
Method employed function
Partial least The difference between PLSR and ordinary least squares (OLS) lies in the fact that PLSR PLS components Manual selection- plsregress
squares is essentially a dimensionality reduction method in which the initial set of features X, based model with
regression (i=0, 1,... L) are mapped to a new set of features Zy, (k=0, 1,... M), where M <L and k least RMSE
(PLSR) are optimized with the training data. This property is a very useful one especially when the

number of available data samples is not necessarily large enough compared to the number

of features, which is the case in our problem. The new set of features are obtained in a

supervised manner in which the response Y is used together with the old features X;

to identify the new features Zy [39]
Support vector Instead of minimizing the sum of squared errors between the model output and the actual Kernel type, Autoconfiguration fitrsvm
regression (SVR) response as in OLS regression, SVR aims at minimizing a different type of cost function, regularization option in Matlab

where only residuals larger in absolute value than some margin of tolerance contribute parameter (C),

to the cost function [36]. Towards this end, a regularization parameter is also defined and degree

to indicate the amount of penalty applied to data samples lying beyond the margin of

tolerance. This regularization parameter represents the first SVR hyperparameter.

Additionally, SVR provides the option to map the input data points using linear or

nonlinear kernels (or basis functions) that can provide better prediction performance,

especially when there is some nonlinear dependency between the ADAS scores

and the set of features.
Random forest Random forest methods [37], unlike PLSR or SVR, utilize a combination of results Number of trees in Autoconfiguration fitrensemble

regression (RF)

of many models/trees (ensemble of models). Trees are constructed via classification and
regression tree (CART) and the data is sampled via bagging and the average of the
outputs used for classification or regression modeling. A comprehensive review of

RF on neuroimaging data is provided by Sarica et al. [64].

the model, levels of
trees, number of splits
in subsequent levels,
number of leaves

in each split.

option in Matlab

8¢S1
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function, which, in this case, is a cross-validated decide to either retain, delete, and/or carry over a
mean squared error between the true ADAS-cog subset of variables to the next iteration.
score and predicted ADAS-cog score.

We employed the GA-PLS toolbox by Leardi et al. RESULTS
to create PLS models [45]. The gapls function from
the toolbox was used and the frequency of retention As depicted in Fig. 2, we created single modal and
of variables in the models was recorded with default multi-modal regression models and compared their
settings [45]. The GA internally employs cross- performance. The comparison (Fig. 3) shows that
validation and root mean square error (RMSECV) on multi-modal based prediction models outperform sin-
PLS models to detect the change in this error and gle modality-based prediction models consistently in

PLSR : plsregress, optimize
. . components based on least | ____
X Calibration data square error on Yrrain i
ing|e and (X Train» y Train) . 3
multimodal . =4 _ SVR: fitrsvm, ;
Data split N=% ,!OptimizeHyperparameters'| ..\ ... »[Each optimized model

4:1 argument set as 'auto’ ; < predicts y Test

n=1 '
RF : fitrensemble, 1 Y M est
y »'OptimizeHyperparameters'|---:
argument set as 'auto’ 0
Test data Comparison and
- _|—>and
(X Tests Y Test) performance metrics MAE

Y Test

Fig. 2. Schematic of regression modeling. X is single or multi-modal predictors and Y is the target value to be predicted. We utilized 5-fold
cross-validation repeated 10 times to account for the random assignment of subjects to different folds. Partial least squares regression (PLSR),
support-vector regression (SVR), and random forest regression (RF) models were trained and tuned based on training folds and evaluated on
test folds. The utilized Matlab function and hyperparameter tuning are shown in italics. Cross-validated correlation (p) and mean absolute
error (MAE) metrics were employed and average performance for 10 runs computed.

9 . . 0.9
|

0.8

» NePB
v Multimodal
¢ AGE
AFDG
e EDU
¢ Tau
AVF
* MRI
APOE

MAE (ADAS-cog score)

-0.1 . .
0 12 ponths 24 36 0 12 pronths 24 36

Fig. 3. Comparison of single and multi-modal dataset performance—collapsing across diagnostic status—with partial least squares regres-
sion. The performance measures cross-validation correlation (p) and mean absolute error (MAE) for ADAS-cog scores are plotted for
predictions at 0, 12, 24, and 36 months in advance.
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Fig. 4. Comparison of single and multi-modal dataset performance—collapsing across diagnostic status—with partial least squares regression
(PLSR), support-vector regression (SVR), and random forest regression (RF). The performances are shown for cross-validation correlation

(p) and mean absolute error (MAE).

all periods (baseline and subsequent 12, 24, and 36-
month follow-up) in all studied subject-groups (i.e.,
collapsing over diagnostic categories). The correla-
tions between the predicted ADAS-Cog 13 scores
based on multi-modal data and that of the observed
scores at 12, 24, and 36 months were 0.88, 0.82,
and 0.75, respectively. The performance comparison

(Fig. 4) shows that the differences among PLSR,
SVR, and RF were not significant (i.e., p>0.05),
except for some instances where PLSR underper-
formed compared to RF (baseline and 12 months:
MRI, CSF, and FDG; 24 and 36 months: APOE and
multi-modal). However, PLSR models were compu-
tationally faster and performed consistently.
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Fig. 5. Genetic algorithm-based importance of parameters in correlations as observed for 100 runs for every period. The frequency indicates
the proportional contribution in ADAS-cog 13 score prediction. The modality group is prefixed to the variable names.

By analyzing the importance of measures (Fig. 5)
contributing to PLSR’s correlation we observe that
the NePB were most important and consistent across
periods for predicting ADAS score, followed by CSF
and MRI biomarkers. Despite the association of age
at baseline, years of education (Edu.), and APOE &4
status with AD risk, these parameters were found
to be least important, perhaps because these factors
are somehow reflected in other parameters. By con-
trast, the importance of amyloid and tau increased
when predictions were made 36 months in advance
(Supplementary Figure 2). Additionally, metabolic
activity in the temporal right and left sides were on
the opposite ends of the importance in the ADAS-cog
score predictions.

Grouping data based on diagnosis at baseline
(Fig. 6) and analyzing the prediction performances,
we generally observed low correlations when a sin-
gle modal data was employed to predict ADAS-score.
However, we observed that NePB, as a single modal
predictor, showed the best predictive performance,
in line with the fact that the to-be-predicted variable
(ADAS-Cog 13) also contains NePB outcomes. How-
ever, the multi-modal approach performs better than
the NePB modality for MCI and AD groups espe-
cially during 24- and 36-month periods. Due to the
high variation in ADAS scores in AD groups, the cor-
relation (p) and MAE were not inversely proportional
to each other.

Our multi-modal based prediction models with the
inclusion of baseline ADAS-cog scores were better
(p=0.80t00.90, Fig. 7 and Supplementary Figure 3)
than the prediction models based only on baseline
ADAS-cog scores (p = 0.75 to 0.87). The inclusion
of the ADAS-cog score with other baseline multi-
modal predictors was observed with improvements
(»=0.002) in the correlations. Overall, the models
predicted well for all periods and this can be observed
when we compare the mean predicted values versus
the actual mean values (Fig. 8).

DISCUSSION

We presented a multi-modal regression approach
to quantitatively track the progression of AD and
showed that it outperforms the conventional single
modal approach. Quantification of AD aids clini-
cians in decisions with treatment and a multi-modal
approach ensures that the prediction models consider
all biomarkers contributing to the disease condition.
Furthermore, conventional classification of patients
into normal, MCI, or AD could be avoided as a clear
distinction among the group is a challenging task
[46].

The classification of subjects based on a few
modalities has been the focus of most recent stud-
ies. Although high classification accuracy (>80%)
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has been reported [17], we speculate that the impact
of mislabeling a subject in the wrong category (and
hence, wrong therapy prescribed) is higher than the
error in predicting ADAS-cog scores (<5 units).
Additionally, ADAS-cog scores are easy to interpret

and follow the longitudinal tracking of AD pro-
gression. In agreement with the classification-based
studies [7], the multi-modal approach outperforms
the single modal approach. Furthermore, our multi-
modal approach shows that ADAS-cog scores are
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conducive to longitudinal predictions contrary to
Marinescu et al. [31], where ADAS-cog scores
were concluded not to be predictable. We, however,
acknowledge that studies were not set up equally as
we used cross-sectional predictors instead of longitu-
dinal predictors and our setup aims for standardized
comparison of predictors from several modalities
while Marinescu et al. aimed to model the patient
stratification in clinical trials.

Clinically, NePB tests and ADAS-cog scores
measure the subject’s cognitive abilities and this sim-
ilarity was showcased with the observance of higher
correlations (Fig. 3 and Supplementary Figure 3). As
the precise pathophysiology and relative contribu-
tion of different pathogenic factors to AD at different
phases of disease progression are currently still under
investigation, the results advocate that instead of
manually estimating the best markers, a multi-modal
approach is beneficial. However, we acknowledge
that the variable selection methods can be utilized to
select the best AD measures (or create sparse models)
utilized in multi-modal modeling further improving
the robustness of the prediction model.

The multivariate techniques (i.e., PLSR, SVR, and
RF) were observed to perform very similarly in their
predictions but the computation times were different,
and this prompted us to favor PLSR. Other nonlin-
ear regression techniques could improve the current
results [47]. The subject attrition during follow-ups

may have diminished the predictive performance of
the model.

CONCLUSION

ADAS-cog 13 scores reflect the current cognitive
state of individuals, and through multivariate regres-
sion and a multi-modal dataset, our results show that
quantitative longitudinal prediction of AD progres-
sion is possible. Thus, the automated multi-modal
approach could help clinicians make timely decisions
for interventions at all stages of AD and inform likely
disease progression at the start of clinical trials.
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